Item Details

The Value of an Empirical Approach for the Assessment of Diatoms as Environmental Trace Evidence in Forensic Limnology

Issue: Vol 1 No. 1 (2017)

Journal: Archaeological and Environmental Forensic Science

Subject Areas:

DOI: 10.1558/aefs.32474


Environmental trace evidence is often encountered during a forensic investigation and is acknowledged to have the potential to contribute valuable circumstantial information pertaining to the context of an individual criminal event. Although traditional study has focused upon the analysis of terrestrial soil and sediment traces, there is growing potential for the forensic assessment of aquatic crime scenes, particularly those within freshwater environments. This paper outlines the current applications of limnology, particularly algae and diatom analysis, within forensic science and introduces new and ongoing research within the field. Two empirical studies are presented which highlight the importance of developing evidence bases within freshwater trace evidence analysis. These studies demonstrate the analytical capability of the Scanning Electron Microscope (SEM) at various stages of an investigation: in the initial screening and collection of an evidential sample from clothing (1); and in the analysis of preserved diatoms following various levels of their exposure to fire damage (2). The results highlight that the SEM provides a valuable tool during the initial stages of an investigation, determining the presence and abundance of a range of environmental indicators and directing further strategy for the more in-depth collection and analysis of a forensic sample. Furthermore, the preservation of diatoms adhering to clothing following prolonged exposure to fire, indicates that efforts to collect any destroyed evidence are worthwhile given the potential to recover freshwater traces over extended time scales. Finally, the value of adopting an empirical approach for the development of a forensically relevant evidence base within forensic limnology, and the importance of having an appreciation of the legal implications for the interpretation and admissibility of freshwater evidence is presented.

Author: Kirstie R. Scott, Ruth M. Morgan, Vivienne J. Jones, Aoife Dudley, Nigel Cameron, Peter A. Bull

View Original Web Page

References :

Anderson, G. S. and L. S. Bell. 2016. “Impact of marine submergence and season on faunal colonization and decomposition of pig carcasses in the Salish Sea.” PloS One 11(3): e0149107.

Annual Report of the Government Chief Scientific Adviser. 2015. Forensic Science and Beyond: Authenticity, Provenance and Assurance. The Government Office for Science, London

Auer, A. and M. Möttönen. 1988. “Diatoms and drowning.” Zeitschrift für Rechtsmedizin 101 (2): 87–98.

Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho and S. Juggins. 2001. “Diatoms.” In Tracking Environmental Change Using Lake Sediments Volume 3: Terrestrial, Algal, and Siliceous Indicators, edited by J. P. Smol, H. J. B. Birks and W. M. Last, 155–202. Dordrecht: Kluwer Academic Publishers.

Birks, H. J. B., V. J. Jones and N. L. Rose. 2004. “Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments–synthesis and general conclusions.” Journal of Paleolimnology 31(4): 531–546.

Black, B., F. J. Ayala and C. Saffran-Brinks. 1993. “Science and the law in the wake of Daubert: A new search for scientific knowledge.” Texas Law Review 72: 715.

Brown, A. G. 2006. “The use of forensic botany and geology in war crimes investigations in NE Bosnia.” Forensic Science International 163(3): 204–210.

Bull, P. A., A. Parker and R. M. Morgan. 2006. “The forensic analysis of soils and sediment taken from the cast of a footprint.” Forensic Science International 162(1): 6–12.

Cameron, N. G. 2004. “The use of diatom analysis in forensic geoscience.” In Forensic Geoscience: Principles, Techniques and Applications, edited by K. Pye and D. J. Croft, 277–280. Geological Society London, Special Publications 232. London: Geological Society.

Carlie, A., C. Arcini, H. Druid and J. Risberg. 2014. “Archaeology, forensics, and the death of a child in Late Neolithic Sweden.” Antiquity 88: 1148–1163.

Casamatta, D. A. and R. G. Verb. 2000. “Algal colonization of submerged carcasses in a mid-order woodland stream.” Journal of Forensic Science 45(6): 1280–1285.

Codd, G. A. 2000. “Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control.” Ecological Engineering 16(1): 51–60.

Cox. E. J. 2012. “Diatoms in forensic science.” In Forensic Ecology Handbook: From Crime Scene to Court, edited by N. Marquez-Grant and J. Roberts, 141–151. Oxford: Wiley.

Dawson, L. A. and S. Hillier. 2010. “Measurement of soil characteristics for forensic applications.” Surface and Interface Analysis 42(5): 363–377.

Delabarde, T., C. Keyser, A. Tracqui, D. Charabidze and B. Ludes. 2013. “The potential of forensic analysis on human bones found in riverine environment.” Forensic Science International 228(1): e1–e5.

Gessner, B. D., J. P. Middaugh and G. J. Doucette. 1997. “Paralytic shellfish poisoning in Kodiak, Alaska.” Western Journal of Medicine 166: 351–353.

Graham, L. E. and L. W. Wilcox. 2000. Algae. Upper Saddle River, NJ: Prentice Hall.

Graham, J. L., K. A. Loftin, M. T. Meyer and A. C. Ziegler. 2010. “Cyanotoxin mixtures and taste-andodor compounds in cyanobacterial blooms from the midwestern United States.” Environmental Science Technology 44: 7361–7368.

Haefner, J., J. R. Wallace and R. W. Merritt. 2004. “Pig decomposition in lotic aquatic systems: The potential use of algal growth in establishing a postmortem submersion interval (PMSI).” Journal of Forensic Science 49(2): 330–336.

Hardy, C. R. and J. R. Wallace. 2012. “Algae in forensic investigations.” In Forensic Botany: A Practical Guide, edited by D. W. Hall and J. H. Byrd, 145–173. Oxford: Wiley-Blackman.

Hawksworth, D. L. and P. E. Wiltshire. 2011. “Forensic mycology: The use of fungi in criminal investigations.” Forensic Science International 206(1): 1–11.

Hoek, C., D. Mann and H. M. Jahns. 1995. Algae: An introduction to phycology. Cambridge: Cambridge University Press.

Holstege, C. P. 2011. “Saxatoxin.” In Criminal Poisoning: Clinical and Forensic Perspectives, edited by C. P. Holstege, T. M. Neer, G. B. Saathoff and R. B. Furbee, 141–144. Sudbury, MA: Jones and Bartlett.

Hürlimann, J., P. Feer, F. Elber, K. Niederberger, R. Dirnhofer and D. Wyler. 2000. “Diatom detection in the diagnosis of death by drowning.” International Journal of Legal Medicine 114(1–2): 6–14.

Incze, G. 1942. “Fremdkurper in Blutkreislauf Ertrunkener.” Zentralblatt für allgemeine Pathologie und pathologische Anatomie 79: 176.

Inman, K. and N. Rudin. 2002. “The origin of evidence.” Forensic Science International 126(1): 11–16.

Jansma, M. J. 1981. “Diatom analysis from coastal sites in the Netherlands.” In Environmental Aspects of Coasts and Islands, edited by D. Brothwell and G. Dimbleby, 145–162. British Archaeological Reports International series 94. Oxford: British Archaeological Reports.

Johansen, J. R. 2010. “Diatoms of aerial habitats.” In The Diatoms: Applications for the Environmental and Earth Sciences, edited by E. P. Stoermer and J. P. Smol, 465–472. Cambridge: Cambridge University Press.

Jones, V. J. 2007. Diatom Introduction.” In Encyclopedia of Quaternary Science, edited by S. Elias, 476–484. Oxford: Elsevier.

Juggins, S. and H. J. B. Birks. 2012. “Quantitative environmental reconstructions from biological data.” In Tracking Environmental Change Using Lake Sediments Volume 3: Terrestrial, Algal, and Siliceous Indicators, edited by J. P. Smol, H. J. B. Birks and W. M. Last, 431–494. Dordrecht: Kluwer Academic Publishers.

Kakizaki, E. and N. Yukawa. 2015. “Simple protocol for extracting diatoms from lung tissues of suspected drowning cases within 3h: First practical application.” Forensic Science International 251: 179–185.

Keiper, J. B. and D. A. Casamatta. 2001. “Benthic organisms as forensic indicators.” Journal of the North American Benthological Society 20(2): 311–324.

Krstic, S., A. Duma, B. Janevska, Z. Levkov, K. Nikolova and M. Noveska. 2002. “Diatoms in forensic expertise of drowning—a Macedonian experience.” Forensic Science International 127(3): 198–203.

Law Commission. 2011. Expert evidence in criminal proceedings in England and Wales (Vol. 829). London: The Stationery Office.

Magni, P. A., C. Venn, I. Aquila, F. Pepe, P. Ricci, C. Di Nunzio and I. R. Dadour. 2015. “Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L.(Crustacea: Cirripedia: Pedunculata).” Forensic Science International 247: e6–e10.

Merritt, R. W. and J. R. Wallace. 2000. “The role of aquatic insects in forensic investigations.” In Forensic Entomology: The utility of arthropods in legal investigations, edited by J. H. Byrd and J. L. Castner, 177–222. Boca Raton, FL: CRC Press.

Mildenhall, D. C. 2006. “Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology.” Forensic Science International 163(3): 231–235.

Ming, M., X. Meng and E. Wang. 2007. “Evaluation of four digestive methods for extracting diatoms.” Forensic Science International 170(1): 29–34.

Mnookin, J., S. A. Cole, I. Dror, B. A. Fisher, M. Houk, K. Inman and N. Rudin. 2011. “The need for a research culture in the forensic sciences.” UCLA Law Review 58(3): 725–780.

Morgan, R. M., P. Wiltshire, A. Parker and P. A. Bull. 2006. “The role of forensic geoscience in wildlife crime detection.” Forensic Science International 162(1): 152–162.

Morgan, R. M. and P. A. Bull. 2007a. “Forensic geoscience and crime detection.” Minerva Medicolegale 127: 73–89.

———. 2007b. “The philosophy, nature and practice of forensic sediment analysis.” Progress in Physical Geography 31(1): 43–58.

———. 2014. “Forensic environmental evidence.” In Encyclopedia of Criminology and Criminal Justice, edited by G. Bruinsma and D. Weisburd, 1705–1713. New York: Springer.

Morgan, R. M., M. Little, A. Gibson, L. Hicks, S. Dunkerley and P. A. Bull. 2008. “The preservation of quartz grain surface textures following vehicle fire and their use in forensic enquiry.” Science and Justice 48(3): 133–140.

Morgan, R. M., J. Cohen, I. McGookin, J. Murly-Gotto, R. O’Connor, S.Muress and P. A. Bull. 2009. “The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence.” Science and Justice 49(4): 277–285.

Morgan, R. M., J. Flynn, V. Sena and P. A. Bull. 2014a. “Experimental forensic studies of the preservation of pollen in vehicle fires.” Science and Justice 54(2): 141–145.

Morgan, R. M., E. Allen, T. King and P. A. Bull. 2014b. “The spatial and temporal distribution of pollen in a room: Forensic implications.” Science and Justice 54(1): 49–56.

National Research Council. 2009. “Strengthening forensic science in the United States: A path forward.” Hearing before the Subcommittee on Crime, Terrorism, and Homeland Security of the Committee on the Judiciary, House of Representatives, One Hundred Eleventh Congress, first session, May 13.

Newell, A. J., R. M. Morgan, L. D. Griffin, P. A. Bull, J. R. Marshall and G. Graham. 2012. “Automated texture recognition of quartz sand grains for forensic applications.” Journal of Forensic Sciences 57(5): 1285–1289.

Pagliaro, E. 2005. “Additional case studies.” In Forensic Botany: Principles and Applications in Criminal Casework, edited by H. M. Coyle, 179–183. Boca Raton, FL: CRC Press.

Peabody, A. J. 1971. “A case of safebreaking involving diatomaceous safe-ballast.” Journal of the Forensic Science Society 11(4): 227.

———. 1977. “Diatoms in forensic science.” Journal of the Forensic Science Society 17(2): 81–87.

———. 1980. “Diatoms and drowning—a review.” Medicine, Science and the Law 20(4): 254–261.

Peabody, A. J. and N. G. Cameron. 2010. “Forensic science and diatoms”. In The Diatoms: Applications for the Environmental and Earth Sciences, edited by E. P. Stoermer and J. P. Smol, 534–540. Cambridge: Cambridge University Press.

Piperno, D. R. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, MD: Altamira.

Pirrie, D., M. R. Power, G. K. Rollinson, P. E. Wiltshire, J. Newberry and H. E. Campbell. 2009. “Automated SEM-EDS (QEMSCAN®) Mineral analysis in forensic soil investigations: Testing instrumental reproducibility.” In Criminal and Environmental Soil Forensics, edited by K. Ritz, L. Dawson and D. Miller, 411–430. Dordrecht: Springer.

Pollanen, M. S. 1997. “The diagnostic value of the diatom test for drowning, II. Validity: analysis of diatoms in bone marrow and drowning medium.” Journal of Forensic Science 42(2): 286–290.

———. 1998. Forensic Diatomology and Drowning. Amsterdam: Elsevier.

Pringle, J. K., A. Ruffell, J. R. Jervis, L. Donnelly, J. McKinley, J. Hansen and M. Harrison. 2012. “The use of geoscience methods for terrestrial forensic searches.” Earth Science Reviews 114(1): 108–123.

Renberg, I. 1990. “A procedure for preparing large sets of diatom slides from sediment cores.” Journal of Paleolimnology 4(1): 87–90.

Reynolds, C. S. 2006. The Ecology of Phytoplankton. Cambridge: Cambridge University Press.

Riding, J. B., B. G. Rawlins and K. H. Coley. 2007. “Changes in soil pollen assemblages on footwear worn at different sites.” Palynology 31(1): 135–151.

Round, F. E. 1970. Biology of the Algae. London: Arnold.

Round, F. E., R. M. Crawford and D. G. Mann. 1990. Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge University Press.

Ruffell, A. 2010. “Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics.” Forensic Science International 202(1): 9–12.

Ruffell, A. and J. McKinley. 2005. “Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations.” Earth Science Reviews 69(3): 235–247.

Scott, K. R., R. M. Morgan, V. J. Jones and N. G. Cameron. 2014. “The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience.” Forensic Science International 241: 127–137.

Siver, P. A., W. D. Lord and D. J. McCarthy. 1994. “Forensic limnology: The Use of freshwater algal community ecology to link suspects to an aquatic crime scene in southern New England.” Journal of Forensic Sciences 39(3): 847–853.

Smith, A., A. G. Brown and O. Elmhurst. 2002. “The combined use of pollen and soil analyses in a search and subsequent murder investigation.” Journal of Forensic Science 47(3): 614–618.

Stam, M. 2009. “The value of diatoms and botanical evidence in a police brutality case.” Paper presented at the National Institute of Justice Trace Evidence Symposium, Clearwater Beach, Florida, August 7-9, 2009.

Stoney, D. A. and P. L. Stoney. 2015. “Critical review of forensic trace evidence analysis and the need for a new approach.” Forensic Science International 251: 159–170.

Uitdehaag, S., A. Dragutinovic and I. Kuiper. 2010. “Extraction of diatoms from (cotton) clothing for forensic comparisons.” Forensic Science International 200(1): 112–116.

US Geological Survey (USGS). “How much water is there on, in, and above the Earth?” Accessed May 3, 2016.

Wiltshire, P. E. 2006. “Hair as a source of forensic evidence in murder investigations.” Forensic Science International 163(3): 241–248.

———. 2009. “Forensic ecology, botany, and palynology: some aspects of their role in criminal investigation.” In Criminal and Environmental Soil Forensics, edited by K. Ritz, L. Dawson and D. Miller, 129–149. Dordrecht: Springer.

———. 2015. “Protocols for forensic palynology.” Palynology 40(1): 4–24.

Yen, L. Y., and P. T. Jayaprakash. 2007. “Prevalence of diatom frustules in non-vegetarian foodstuffs and its implications in interpreting identification of diatom frustules in drowning cases.” Forensic Science International 170(1): 1–7.

Yoshimura, S., M. Yoshida, Y. Okii, T. Tokiyasu, T. Watabiki and A. Akane. 1995. “Detection of green algae (Chlorophyceae) for the diagnosis of drowning.” International Journal of Legal Medicine 108(1): 39–42.

Young, J. M., L. S. Weyrich, J. Breen, L. M. Macdonald and A. Cooper. 2015. “Predicting the origin of soil evidence: High throughput eukaryote sequencing and MIR spectroscopy applied to a crime scene scenario. Forensic Science International 251: 22–31.

Young, J. M., L. S. Weyrich and A. Cooper. 2016. “High–throughput sequencing of trace quantities of soil provides reproducible and discriminative fungal DNA profiles.” Journal of Forensic Sciences 61: 478–484.

Zimmerman, K. and J. R. Wallace. 2008. “Estimating a postmortem submersion interval using algal diversity on mammalian carcasses in brackish marshes.” Journal of Forensic Sciences 53: 935–941.